Recent advances in optical coherence tomography (OCT) and OCT angiography for biomedical applications

李翔傑副教授 (Hsiang-Chieh Lee) hclee2@ntu.edu.tw

Graduate Institute of Photonics and Optoelectronics Department of Electrical Engineering Molecular Imaging Center National Taiwan University

Subsurface Imaging Techniques

J K Holosk

Subcutaneous

tissue

http://www.scielo.br/scielo.php?pid=S0365-05962009000600009&script=sci_arttext&tlng=en https://www.researchgate.net/figure/Normal-skin-Ultrasound-imaging-has-been-routinely-used-by-dermatologists-in-our

Subsurface Imaging Techniques

OCT

Optical Coherence Tomography (OCT)

How it begins....

Home	News	Journals	Topics (Careers	
Science	Science Advances	Science Immunolog	gy Science Robotics	Science Signaling	Science Translational Medicine

Science 22 November 1991: Vol. 254 no. 5035 pp. 1178-1181 DOI: 10.1126/science.1957169

Optical Coherence Tomography

DAVID HUANG, ERIC A. SWANSON, CHARLES P. LIN, JOEL S. SCHUMAN, WILLIAM G. STINSON, WARREN CHANG, MICHAEL R. HEE, THOMAS FLOTTE, KENTON GREGORY, CARMEN A. PULIAFITO, JAMES G. FUJIMOTO*

Optical coherence tomography (OCT) – I

- Imaging speed real time
- Imaging depth mm

- Depth-resolved
- Spatial resolution µm

Huang, et al., Science (1991).

Optical coherence tomography (OCT) – II

- Time-domain OCT¹
- Fourier-domain OCT²⁻⁶
 - Spectral-domain OCT (SD-OCT)^{2,4,5}
 - Swept-source OCT (SS-OCT)^{3,6}

- Huang, *et al.*, Science (1991).
 Fercher *et al.*, Opt. Comm (1995)
 Chinn *et al.*, OL (1997)
- 4. Leitgeb *et al.*, OE (2003)
 5. De Boer *et al.*, OL (2003)
 6. Choma *et al.*, OE (2003)

OCT Retinal Imaging (1991)

D. Huang, E. Swanson, et al, Science vol. 254, pp. 1178 (1991)

Early Research Prototype OCT (ca 1994)

Running at 40 A-scans per second

More than 5000 patients imaged at the New England Eye Center

First OCT studies of

- Glaucoma
- Diabetic retinopathy
- Macular degeneration

Carmen Puliafito, MD Joel Schuman, MD

Courtesy of Eric Swanson

Commercial Development of Ophthalmic OCT

Since the first demonstration of OCT for ophthalmic OCT applications, there has been tremendous improvement on the performance of the OCT for retinal imaging.

OCT procedures surpassed the sum of other ophthalmic imaging procedures

**CPT[®] codes are the US standard for how medical professionals document and report medical, surgical, radiology, laboratory, anesthesiology, and evaluation and management (E/M) services. All healthcare providers, payers, and facilities use CPT[®] codes.

Existing Commercial Ophthalmic OCT Products

(a) Cirrus-HD OCT 5000 from Zeiss; (b) Optovue Inc. RTVue and Handheld iVue OCT systems for ophthalmology; (c) Topcon 3DOCT-2000 for ophthalmology; (d) Heidelberg Engineering Spectralis OCT for ophthalmology; and (e) Nidek RS-3000 Advance for Ophthalmology.

OCT in Dermatology

J Welzel, "Optical coherence tomography in dermatology: a review", Skin Res. Technol. Vol7., Iss.1, pp1-9, (2001)

Companies Developing OCT Systems

http://iovs.arvojournals.org/data/Journals/IOVS/935468/i1552-5783-57-9-OCT1-f15.png

Endoscopic OCT

• First demonstrated in rabbit esophagus *in vivo* in 1997¹.

 Subsequently, *in vivo* OCT imaging of the human GI tract was demonstrated by multiple groups in parallel in 2000²⁻⁴.

Tearney, *et al.*, Science (1997).
 Bouma, *et al.*, GIE (2000).

Sivak, *et al.*, GIE (2000).
 Jackle, *et al.*, Endoscopy (2000)

Ultrahigh Speed Endoscopic OCT System

The rotational speed of the micromotor in the rendering is slowed down significantly for the purpose of illustration.

- 600,000 depth scans per second
- 400 frames/images per second
- 2.4 mm depth range (in tissue)
- ~8 µm axial/20 µm transverse resolution*•
- ~101 dB detection sensitivity

*full width at half maximum (FHWM)

- 3.4 mm diameter micromotor probe
- 10 x 16 mm² field of view
- 8 second acquisition time
- Real time display for imaging guidance
- >10x faster than commercial system

Endoscopic OCT Angiography (OCTA)

 Endoscopic OCTA was performed by calculating the intensity decorrelation (D) between consecutive OCT images, resulting from the moving erythrocytes in the microvascular network¹.

1. Kashani, et al., Prog. Retin. Eye. Res. (2017).

Clinical Endoscopic OCT Imaging

Endoscopic OCTA

Endoscopic OCTA of normal human esophagus

OFFICIAL JOURNAL OF THE AGA INSTITUTE

Tsai, et al., Gastroenterology (2014).

Micromotor Balloon Imaging Catheter

Lee, et al., Biomed. Opt. Express (2016).

OCTA Imaging of the Human Buccal Mucosa

*unpublished data.

Animal Imaging Procedures

- Sedation: intramuscular injection of 5 mg/kg telazol and 2 mg/kg xylazine.
- A 16.7 mm ID overtube was placed using a dual channel endoscope to facilitate the introduction of the micromotor balloon catheter.

US Endoscopy

OCT images of the Swine Esophagus

En face OCT Capsule with Micromotor

- Ultrahigh speed OCT can deliver volumetric imaging up to 20x faster than commercial endoscopic OCT
- Tethered capsule can image circumference and extremely long length (>20 cm) of esophagus
- Semi-rigid tether enables introduction into esophagus of sedated patients, independent of endoscope

K. Liang, et al., Am J Gastroenterology (2016).

Tethered Capsule Imaging Procedure

Gora, et al., Gastroenterology, vol. 145, pp. 723 (2013).

Tethered Capsule Imaging

Gora, et al., Nat Medicine, 19, 238-240 (2013)

Photonic Integrated Circuit (PIC)

- PICs are revolutionizing fiber optic telecommunications
 - ~\$100M's in R&D investment
 - ~\$5B's market
 - High performance: Very low loss, wide bandwidth, high-speed
 - Manufacturable with high yields and high volumes
 - Compact: PICs with 100's to 1000's of optical elements
 - Small incremental cost to add additional electro-optical functions
- Integrated optics will offer tremendous promise for the future of OCT

Future OCT System

Silicon Photonics Integrated OCT System

Long range OCT

Song, et al., Biomed. Opt. Express (2016).

Coherent Receiver Integrated OCT System

- Dual polarization, dual balanced, in phase and quadrature (IQ) detection
- >70 nm optical bandwidth at 1550 nm
- Low loss (~ 4 dB)
- > 25 GHz electrical bandwidth
- 3 mm x 4 mm die size

Wang, Lee, et al., Biomed Opt Express (2014)

Collaboration with Acacia Communication

Anterior Eye Imaging using VCSEL and Integrated Receiver @1310nm

- Scan pattern: 2000 x 200 A-scans/volume
- Acquisition time: 2 s
- Scan field: 18 × 18 mm²

*unpublished data

OCT Imaging at ~1 Cubic Meter Volume

Wang et al., Optica (2017)

OCT Imaging at ~1 Cubic Meter Volume

50cm

DC 🖊

Scan pattern: 1000x1000 A-scans/volume

THORLABS

- Scan volume (~200cm depth, ~100cm horizontal, ~100cm vertical)
- Edge of chess board to back of mannequin ~80cm

Meter Range OCT for 3D Documentation

10cm

先進生醫光電影像實驗室 Advanced Biomedical Optical Imaging Laboratory

李翔傑助理教授 (Hsiang-Chieh Lee) hclee2@ntu.edu.tw

Graduate Institute of Photonics and Optoelectronics Department of Electrical Engineering Molecular Imaging Center National Taiwan University

Advanced Biomedical Optical Imaging Lab

• MIC Room 114:

800nm SD-OCM (~100kHz Ascans/sec)

- customized spectrometer with a USB 3.0 line-scan camera (e2V) and off shelf optics
- Inverted microscope (sample arm)
 1060 SS-OCT (100 or 200kHz Ascans/sec)
- suitable for human/animal study

Advanced Biomedical Optical Imaging Lab

• MIC Room 114:

Advanced Biomedical Optical Imaging Lab

• MIC Room 109:

1310nm SS-OCT (20 or 100kHz Ascans/sec)

- suitable for human/animal study
- platform for future catheter based OCT system development
- 1700nm SS-OCT (90kHz Ascans/sec)
- 4f fiber optic scanning confocal microscope
- increased imaging depth due to decreased tissue scattering

Customized Graphic User Interface (GUI)

Parameter setting panel

Event button panel

Test system: 1 µm OCT with an A-scan rate of 100 kHz. Software Engine: C++ plus MFC for graphic user interface (GUI) (multithreading config.)

Preview Mode

CPU vs. GPU

Framework I – ATS-GPU: preview

400 kHz light source (Thorlabs, SL134000-SP1)

OCT images processed by CPU with multithreading

OCT images processed by AlazarTech GPU

Moving a tweezer on the tooth specimen

1024 pixels/A-scan, 4000 A-scans/B-scan, 1000 B-scans/C-scan

Framework I – ATS-GPU

Early Detection of Oral Cancer Lesions with Optical Imaging Technology

Unmet Clinical Need – Oral Cancer

Unmet Clinical Need – Oral Cancer

Stage	5-yr survival rate		
1	79.9%		
П	71.0%		
Ш	56.5%		
IV	35.6%		
2012-2016 MOHW (Taiwan) Data			

Basement

membrane

High risk/ tx. intervention

⁺Incidence & Prevalence of Oral Cancer" Oral Cancer Foundation (2015)

adapted from https://teachmeobgyn.com/gynaecology/cervix/cervical-cancer/

Early Detection of Oral Cancer

¹adapted from https://www.123rf.com/stock-photo/dentist_cartoon.html?sti=o8hsfwc1qmwlmqv16l

Multiscale Tissue Scanner – I

- Light source (Santec):
- Central wavelength: 1690 nm
- A-scan rate: 90 kHz
- Axial resolution: 7.2 µm

- MEMS scanner
- 3D motorized stage

Multiscale Tissue Scanner – I

Multiscale Tissue Scanner – II

System Operating Video

Custom developed graphic user interface (GUI)

Preliminary Results – Human Finger

0.5 mm

EP: epidermis DM: dermis FOV: 5.5 mm X 5.5 mm (a), (b) Cross-sectional image and reconstructed crosssectional image of the finger nail junction, respectively

(c), (d) Cross-sectional image and reconstructed *en-face* image of the ventral surface of finger, respectively

The junction between epidermis and dermis, and the sweat ducts can be seen clearly in our long wavelength OCT system.

Red arrows: sweat duct

Quantitative Microvascular Imaging with Optical Coherence Tomography Technology

OCT Angiography of the Mouse Ear Skin

B-scan Frame rate : 80 Hz Imaging field of view: 4.08 x 4.08 mm²

OCT Angiography of the Mouse Ear Skin

High speed

Low speed

Imaging field of view: 5.1 x 5.1 mm²

OCT Imaging of the Guinea Pig Cochlea

Hearing loss and deafness

- Congenital causes and acquired causes
 - birth asphyxia
 - chronic ear infections
 - the use of particular drugs
- sensorineural hearing loss (SNHL)
 - exposure to excessive noise
 - not completely recoverable
- Internal ear
 - vestibular system
 - cochlea

OCT imaging of guinea pig cochlea

(a) En-face image

(b) Cross sectional image

OCT imaging of guinea pig cochlea

(a)~(d) OCT images for the guinea cochlea, and (g) the scanning direction for each B scan image

Catheter-based OCT System – Preliminary Results

 \bigcirc 0

- 1.3 µm, 100kHz Santec
- 10 fps (10,000 A-scans/B-scan)

International Collaboration

Domestic Collaboration

Thanks for your attention.

If you want to go fast, go alone. If you want go far, go together.

~African Proverb~