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Artificial Intelligence

edureka!

ARTIFICIAL INTELLIGENCE

Engineering of making Intelligent
Machines and Programs

MACHINE LEARNING

Ability to learn without being

l 2)] 'J'ﬁ explicitly programmed
I + DEEP LEARNING

Learning based on Deep
Neural Network
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Al Methodology and Applications
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| Know Machine Learning

Which face is real?
http://www.whichfaceisreal.com/index.php
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(D) T, correct?
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Iteratively
Tune

Generated
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Deep Learning

Deep Neural Network

Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

- 4-'\. -
edges combinations of edges object models
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Deep learning for Classfication

forward  “dog" labels

Fam ™y l.
=? “human face” ||
-l
Large N backward error

TRAIMNING

“human face"”
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varied N
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How to use Al for Smart Machinery
(Manufacturing)?
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Categories of AI using Neural Networks

e Data is ready ® Data is ready
»Problem is classification

» Problem is prediction

RBFN Function Approximation Multiclass Classification

®  Trainin g Data
4 |——RBFN Output

Input layer

Hidden layer " 20 0 " o 0o
(a) . (b)
Key point: prediction
select proper input/output variables
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Categories of Al using Neural Networks

e Data should be collected
» Using Domain knowledge (physical meaning) to select proper variables
» Experiment Design
* Random values
» Taguchi method
 Uniform Experimental Design (UED)
» Data Collection
» Data processing and analysis
* Correlation analysis
* Data clearing

» Neural network training

ICAL AR

SRR EAEESE

Al for Vibration Signals Analysis vs. Machine
Diagnosis
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Rolling Element Bearings

+ Bearings are highly engineered, precision-made components that enable
machinery to move at extremely high speeds and carry remarkable loads with
ease and efficiency.

+ Bearings are found in applications ranging from small hand-held devices to

heavy duty industrial systems.

= ; 3
; ca inner race  sealing
outer race  rolling elements Le £
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Bearing Defects

Localized defects Distributed defects

i) Cracks i) Surface Waviness

ii) Pits i1) Misaligned races

iii) Spalls iii) Off-size rolling
elements

Cause : Fatigue on Cause : Manufacturing

rolling surfaces errors, Wear
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® [ocalized defects in bearing elements
Applied Load

Load Zone
OR
REs

Y m ) STEP:1 DATA ACQUISITION
X & L
{ 1187 el > 10
— FEATURE EXTRACTION USING
Machinery Fault Simulator Raw Vibration Signals SIGNAL PROCESSING TECHNIQUES -
Healthy and Faulty Bearings STEP:2 JHmE=
STEP:3 DECISION MAKING
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Vibration Signal Processing

i

[ 1.Time-domain approach ] [2 Freq,-domain approach]

3 TF domain approach

T

Stationary Signals

Non-Stationary Signals

Characteristic defect frequency Expression

*Outer race

Outer race defect frequency, W,y — (2 a,/2)|L- (D) cos ||
Inner race defect frequency, Wiy ——(Za /2) [I+(dD) cosal|
“Rolling element — Rolling element defect frequency, W req—(D c)s-"'d)ll'(dz-"D2)coszf-!]

sInner race

«Cage — Cage frequency, w . (0, /D)1 (@D) cose]|

d is the roller diameter Dis pitch diameter @, is shaft rotational speed  Z is number of balls




Modeling

LSS LT

Mi+ci+kx=u
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Vibratory Model of Bearing

Outer race Outer fluid Roller TInner flud Inner race

Yo

Governing equations:

[MIyj+[BRyj+[Ky}={Q}

{Q} = Excitation vector with excitations due to
defects on bearing elements
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I MATLAB- Rolling Element Bearing Fault Diagnosis

https://www.mathworks.com/help/predmaint/ug/Rolling-Element-Bearing-Fault-Diagnosis.html

Outer race Outer fluid =~ Roller Tuner fluid Tnner vace
Yo
@0 b
7 43 H
Ko

Bechhoefer, Eric. "Condition Based Maintenance Fault Database for Testing Diagnostics and Prognostic Algorithms." 2013. https://www.mfpt.org/fault-data-sets/
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Explainable Artificial Intelligence (XAI) for
Vibration Signals Analysis: Bearing Faults

Classification Using CNNs
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Deep Learning vs. Machine Learning

Machine Learning

& — & — %7 I

Input Feature extraction Classification Output

Deep Learning

Input Feature extraction + Classification Output
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Why Explainable Artificial Intelligence?

Today Task
= = Wby ene yoru b hat?
. Decrsenar * ¥y not somathng elze?
Training A I'I‘“’-i e Lesgarrwed FerLan i Rbeinal = TR U pua AT
Leaming > = netion = it (20 yriru Epul®
Data Process u « Wifhan oan | st you?
= Hawy 50 | comect an tminT
User
XAl Task
* « | undorutand iy
Hew = | nelonstant why nol
Trawing " Maching n Explainable | Explanation = | ko whian Yo suscoms
Datn Leaming bMode Interfuce » | ko wehan yeu kil
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Why Explainable Artificial Intelligence?

]nput Black box or white box ?

How can I find
errors?
. OO Why so
::> expensive?

%1:> Learning process :>
: al

Training . Learned Prediction User
Data

Algorithm function interface

/towardsdatascience.com/explainable-artificial-intelligence-14944563cc79
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Why Explainable Artificial Intelligence?




Evolutionary Fuzzy Systems

(Input intertace)

Dinner for Two
a 2input, 1 output, 3 rule system

Input 1

If service is poor or food is rancid,

eyt then tip is cheap.

Service (0-10)

Rule 2 Ifservice is good, then tip is average.

Qutput
E Tip (5-25%)

Input 2

Food (0-10)

Rule3 fservice is excellent or food is /

3
delicious, then tip is generous.

The inputs are crisp
(non-fuzzy)
numbers limited to a
specific range.

All rules are The results of the The resultis a
evaluated in paralle! rules are combined crisp (non-fuzzy)
using fuzzy and distilled number.
reasoning. (defuzzified).

https://es.mathworks.com/help/fuzzy/fuzzy-inference-process.html
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Evolutionary Fuzzy Systems vs. XAl

ML Algorithmic Trade-Off

High
A XAl
(using Fuzzy Logic)
Linear/Logistic
Regression

— Decision Trees

=]

S Naive Bayes

=1 Nearest

- Neighbors SO0ty

15 Dichiet

= Ditichlet

— Processes Neural Nets

SVMs
) Lo Deep Learning
Low > High

Accuracy

https://link.springer.com/chapter/10.1007

!




Rolling Element Bearing Fault Diagnosis

1. Inner Race

2. Outer Race

3. Balls

BPFO :n—;'(l—%cow)
BPFI =n7fr(l+%cos¢)

FTF =%(1—%cos¢)

BSF =3(1—(%cos¢)2)

2d

y Ball bearing cross-section (Magnified) b
B T T T T s /AW wwW . mathiworks.com/help/predmaint/ug/Rolling-Element-Bearing-Fault-

Rolling Element Bearing Fault Diagnosis

outer ring fault — onginal signl

mmmmmm signal

Amplitude
Amplitude

Features?




Bear Fault Diagnosis and Monitoring
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Brief Introduction for Powerful Artificial
Neural Network- Convolutional Neural
Network
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Convolutional Neural Networks
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convolution + max pooling vec | o \?
| nonlinearity | o
convolution + pooling layers fully connected layers  Nx binary classification
wapodd — =
maxpool mapeal mazpoal VGG 1 9
' . . T
% Depth 512
Depth 256 ?:;":m‘fz 8 oo P BV sofimax
Depth 128 bd cony Convd_L Conv3 1
3x3 conv o Convd 2 Convs 2 FCl FC2
Depth 64 Com2_1 o Convd 3 Comv5_3
313 comy Com?_2 Conv3 3 Comvd 4 Convs_4
Com 1 ~ Comv3_4 =
Camvl_2




Consider learning an image:

e Some patterns are much smaller than the whole image
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Same pattern appears in different places:
They can be compressed!
- What about training a lot of such “small” detectors
and each detector must “move around”.

They can be compressed
to the same parameters.
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A convolutional layer

A CNN is a neural network with some convolutional layers
(and some other layers). A convolutional layer has a number
of filters that does convolutional operation.

— ———_—____
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Convolution
These are the network

parameters to be learned.

1[-1]-1
of1|ofo|1]0 RN
olo|1]1]0]0
11ofo]o0|1]0 -ty
olt1lolol1lo -1 1 -1 Filter 2
olo|1]|o]1]0 11 -1

6 x 6 image

Each filter detects a

small pattern (3 x 3).
ICAL AR i
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Convolution L]-1]-1
-1 1 | -1 =Filterd
-1 0-1 1
stride=1
110[010§J0 /|1 |Dot
product
OJr{oyoy1|{0|—— 3 -1
OJ10(1414301]0
1{010]0]110
O11(0(011]0O0
Ol10(1{0(11]0O0
6 x 6 image
(. ICALas
ET; EREE o) T P SRS
Convolution 1|-1]-1
-1 1 | -1 =Filterd
-1 0-111
If stride=2
110101001011
oltfofol1]o 3 3
Or1o0of14110710
1{010]0]110
O11(0(011]0O0
o(0(1{0(11]0
6 x 6 image
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Color image: RGB 3 channels

1] -1]-1 11| -1
-1 |1 |-1|[Filter1 -1 (1 ]-1|[Filter2
1-1]1 A1 |-
CoIorimage_ S ——
[l T T
i 1]o]o|o]o0]1
‘Ho|1|lo[lo]1]0
‘Holo|1[1]0]0
Hi1lojojo|1]o0
Hol1]o]o]|1]0
ALallo|o|1]0]1]0
Fl R EREEEE
S

| Convolution ‘

| M pooing |
‘ re?)neat
many

i times
_d J
:ﬁ?i

| Convolution

Lﬁ:??ﬁ) S1e1exe)
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Max Pooling

1]-1]-1 A1 -1
-1 (1 |-1| Filter1 -1 (1 |-1|Filter2
1111 1] -1
3 113 - 5 R I I B
-3 1 0 -3 1 1 ) 1
3 3110 1 1 1]l -2 1
ol -4 3

Why Pooling

e Subsampling pixels will not change the object
bird
bird

We can subsample the pixels to make image smaller

_Wer paramggepgjto gRaracterize the image
" ft B9 ) R PR S SRS $




towd

3

: e
s

- r \
-1 1 Convolution
v | Max Pooling
o] =
Convolution

Smaller than the original image

The number of channels is the
number of filters

o

3
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Can
repeat
many
times

Fully Connected
Feedforward network

Convolution

Convolution

A new image

A new image
g




‘ 0 J‘ 3 | Flattened

\i) Fully Connected
i  Feedforward network
</
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Convolutional Neural Networks

16000 16@7,060 16@996 30@M63 32860 64@23  120@8 128 64 10

J t f

Input Image (28x28)
R,G,B

Sub-samp. layer Conv. layer

12x12 8x8 Sub-samp. layer

44 MIPlayers  Output
{class vectors)

Subsampling

64
3D- CNN
[i_
RS
-[npm Conv. POOLING Conv. POOLING Comv.  Conv. FC FC FC Input -
Vector layer layer layer  layer layer  layer Layer Layer  Layer
2D- CNN Feature Volumes
Conv, layer { 1 1
24x24 Convolutional Layer

Fully Connected




Convolutional Neural Networks (CNN)

® Proposed by Y. Lecun et al. (1998) | Feature extraction )
® Basic operations: :' m ﬂfff[ﬂ %lﬂ—) oo ; Caifsion
» Convolutional layer ,Hllll' I I L 7oK N i
. Raw signaly & © el SoRmax.
» Pooling layer v \;-lDéNN o Classifier
» Fully-connected layer
e Extract features automatically.

according to different inputs.

1
1
1
1
1
IDCNN and 2DCNN are applied as model |
|
il
1
1

Time-frequency sPectra

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document
recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
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Optimization of Model Structure

® Proposed by Optimizing Parameters of Multi-Layer Convolutional Neural Network by
Modeling and Optimization Method.

e Optimizing procedures
1. Parameter Selection: Main structure, the optimized hyperparameters, and levels selection.
2. Design experiments: using uniform experimental design (UED).
3. Data Acquisition: Experimental data acquiring.
4

. Model Development: between hyperparameters and performance (mean absolute percentage error,
MAPE).
error = f o (hyperparameters) (D)

5. Optimization: by full-factorial searching algorithm. (Minimize the MAPE of models)
fitness = MAPE = fj;4pr (hyperparameters) 2)

6. Verification

e Particle swarm optimization (PSO) is applied to compare with full-factorial

searchlng al gorlthm ln the thesis . "Optimizing parameters of multi-layer convolutional neural network by IR%d
- optimization method," IEEE Access, vol. 7, pp. 68316-
W SRR AR AR EEE ¥




Particle swarm optimization for optimization

e Min MAPE -
C
s.t. hyperparameters Fp s‘
Ney —-_7] Neural network/ . MAPE
) Ney — ) Multiple regression
e Using surrogate model developed by neural network

Nes 7:
NFZ

Vi(t+ 1) =w X V;(t) + random X ¢; X (Ppbest - P; (t)) + random X ¢, X (Pgbest — Pi(t))

Pi(t+1) =P )+ V;(t+ 1)

Direction of ! T Nowmation
b
persanal best Direction of

‘ghotul best

. Bt postion ek i vt lteration # 0 Iteration # N

.

[

CNN for Prediction: Machining Quality
Prediction (1/9)

e Dataset introduction
» The dataset is proposed in [R1].

» Tungsten carbide milling cutter are used to cut
S45C steel.

» The accelerometers are mounted on the spindle and
vise to measure the vibrations in X, Y, and Z
direction.

» The sampling frequency is 10 kHz.

» The surface roughness is measured by Mitutoyo
SV-C3200S4.

v' (a) Milling machine of experiment. (b)

> There are total 153 data. Tungsten carbide milling cutter. (c) Setup
of accelerometers on spindle and vise.

_— —
[R1]K. W. Lei and T. Y. Wu, “Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network,” The International Journal of
Advanced Manufacturing Technology volume 102, pages305-314(2019) http://web.nchu.edu.tw/~tianyauwu/data/ra_s45c/ra_s45c.htm

Y mmaies mmEESs . |
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CNN for Prediction: Machining Quality
Prediction (2/9)

3 axial vibration signals of vise are applied as inputs.

A 1DCNN with parallel convolutional structure is applied to predict machining
quality. The features of vibration signals in X, Y, Z axis are extracted separately.

® The optimization for CNN structure is applied in this application.

Fully-conn. |

2 \[I ) S R

@ Hyperparameters of IDCNN for predicting machining quality.

Layers Filter size | Stride | Number of Filters or nodes | Activation function
X-axial signal
el pool1 cony Conv.1(X,Y.Z) | Fe(16-25) | 2 Ney (11~20) ReLU
Ry 2 ; Pool. 1 (X,Y,Z) | Ep (11~20)
h H[ |[H ﬂfﬁj iy, =) | Conv.2 (X,Y,Z) | Fp(16~25) | 2 Nz (11~20) ReLU
i - I 1 = Pool.2 (X,Y,Z) | Fp (11~20)
Y-axial signal p
Conv, | Pool. 1 Conv. 2 Pool 2 Flatten
ke ~ - . Fully-connected 1 ReLU
q | : L'_|.'I= |{_E‘JH1
m I [E]I iy, [Ehite Fully-connected 2 ReLU
1 : |
Z-axial signal OUtPUt 1
Coav. 1 Pool. 1 Conv.2 Fool 2
@ The structure of CNN for predicting machining quality. ICA L.ﬁ.B
- P
BSER AR R EREEE

CNN for Prediction: Machining Quality
Prediction (3/9)

€ MAPE of CNN with design factors

® There are six design factors. Four levels predicting machining quality.
. Fe Fp Neq Ne, Npyp Ng, |Avg. testing MAPE (Std.
arc selected fOI' each factors. The unlform 16) 17 14 170 100 70 14.35] 0.539258751
. . 6 25| 20) 17) 14 100)] 40) 13.57) 3.270045871
layout apphed heI‘e 1S U28(4 ) 19) 17 17 17 70) 40 16.00333333] 3.239140833
. 16| 14 11 20| 100)] 40| 18.42666667] 4.279746877
» The selection of hyperparameters are based on [R2]. o w1 ul a0 70 18.3]_3.206922808
. 16| 20 11 11 10| 70| 23.83333333[ 1.909589834]
» The structure is based on the performance of 2 ul 1 20 40 10 25.16] 6573271636
. : : : : 22| 17| 17| 11 10| 100 23.11333333] 1.005700419
predicting model using single axial signals. o e 3 805772603
» Selection of F¢, Fp, N¢1, Ngo: The number of 22| 200 14 14 40 70 19.11] 4.725007937
N 25 14 20 14 70) 70| 15.17333333] 1.84819732
features after flatten layer is close to the number T T T Y T T 25.44] 5371787412
. - 25 11 17, 20) 100 70| 11.33666667| 2.476051965|
Of nOdeS n the ﬁrSt fll]ly COHHCCted layer' 19| 20 20 11 100)] 10| 18.82666667| 4.710141541
. . 16| 11 20 17 40 40| 18.46333333] 1.602789235
e Every structure is tested for three times. oo T 0 a0 2103 2205833176
F 22 14 11 11 70) 100 18.4] 5.753885644
c 25| 17] 20 11 40| 40) 16.59333333| 3.317368435
FP 16| 17| 20 20) 70| 100 13.68333333 2.2251367
25| 20 11 17| 70| 100 18.50333333| 4.724683411
N1 ——_3  Neural network/ L, PE 25 14 14 17, 40 100] 18.52333333| 2.156161713
N., — | Multiple regression MA 25 17l 1 200 10] 10 19.17333333] 4.337998771
c2

/ 22| 14 20 17, 100)] 10| 16.02333333| 1.626939868

NFl / 19| 17] 11 14 40 10| 19.54333333 5.028323113] «
19| 11 14§ 14 100)] 100 15.81] 0.610245852
Nra %1 ICAI— 16} 11 14 11 70 10) 28.36333333| 7.945264837
by modeling and qEthgiscel 22 20 14 20 70 40 15.21333333] 2.673131744
g %i}gﬁw;ﬁ" 19| 20 20 20) 10| 100 18.87666667] 2.240186004




CNN for Prediction: Machining Quality
Prediction (4/9)

e Model Development

e At first, multiple regression (MR) is applied for modeling the relation between
hyperparameters and corresponding performance.

® The hyperparameters and MAPE are normalized.

e MAPE = 0.851765 — 0.327610F, — 0.416407F, + 0.014152N,; + 0.237988N,,
+0.124956Nz; — 0.279920Np, + 0.059016F Ny, + 0.252224F N,
—0.222143FpNgy + 0.732162FpNpy — 0.335637 Ny, Nyy — 0.045989N;; Ny
—0.476843N;,Ng; — 0.309332Nz; Ny 3)

® R-squared: 0.9061

- - ICALAB
e BT R EAEEE

CNN for Prediction: Machining Quality
Prediction (5/9)

e Full-factorial searching algorithm is applied for optimization.

® The optimized hyperparameters combination of MR model

> Fi 25 @ Testing MAPE of the optimized hyperparameters
» Fp: 20 combination using MR model.
» N¢q: 20 Test MAPE 1 | Test MAPE 2 | Test MAPE 3 | Avg. MAPE |Standard deviation
> :
Nez 20 15.74% 13.97% 13.19% 14.3% 1.090%
» Npq1: 100
> NFZ - 10

» Corresponding MARE: 5.788%

® The optimized hyperparameters combirjation is verified three times.
e The prediction has 147.06% qf error.

® The hyperparameters combination does not perform better comparing to the UED i@
experiments. _ >




CNN for Prediction: Machining Quality
Prediction (6/9)

e Model Development

® A neural network (NN) is applied for modeling the relation between
hyperparameters and corresponding performance.

® The hyperparameters and MAPE are normalized.

® Initial leaming rate: 0.005 @ Structure of NN for modeling the relation
® R-squared: 0.9999999996 between factors and testing MAPE,
Layer Nodes | Activation function Bias
Input 6 None None
Hidden 1 12 Sigmoid None
Output 1 None Yes
Total parameters | 85

ICAL AR
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CNN for Prediction: Machining Quality
Prediction (7/9)

e Optimization: Full-factorial searching algorithm
e The optimized hyperparameters combination of NN model

> Fe: 25 @ Testing MAPE of the optimized hyperparameters
» Fp: 11 combination using NN model.
> Nei: 18 Test MAPE 1 | Test MAPE 2 | Test MAPE 3 | Avg. MAPE [Standard deviation
> ch: 12
0 o 0 0 0,
> Npg: 100 11.04% 10.68% 8.44% 10.053% 1.150%
> NF2: 50

» Corresponding MAPE: 10.849%
® The optimized hyperparameters combination is verified three times.
® The prediction h*s 7.337% of error.

® The optimized structure improves the performance by 11.3%. 3@
56
T menms R AR =




CNN for Prediction: Machining Quality
Prediction (8/9)

e Optimization: PSO

> lterations: 3000 (Early stop criteria: Pypeg; stops revolving for 500 iteration.)

» Particles: 250 fitness
® The optimized result of NN model 2 ‘

> F:25

> Fp:ll g

> Ngyi: 18 ‘

> Ngy: 12 ‘

> Npg: 100 |

» Ngy: 50 wel = = 5 = =

rrrrr

e PSO takes 43.435 seconds to complete the process while 146.87 seconds for full-
factorial searching algorithm.

5 ICALAB e
: | EERSHERERRSE e

CNN for Prediction: Machining Quality
Prediction (9/9)

® The results show that neural network can be applied for modeling. The structure,
learning rate, and normalization or not affect the performance of neural network and
the final optimized result a lot.

» A simple NN with smaller learning rate is recommended.
» Normalization is necessary.

® When the structure of optimized CNN is more complex, PSO and other optimization
methods are necessary to reduce the needed time.

® MAPE of machining quality prediction using CNN is 10.053% while the MAPE of
neural network using characteristics of vibration signals in [R1] is 18%.
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CNN for Classification: Bearing Faults
Classification (1/3)

Dataset: Case Western Reserve University (CWRU) bearing data

https://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures

Signals are collected using accelerometers mounted at the drive end of the motor with
12 kHz of sampling frequency.

Faults are man-made using electrical-discharge machine.
64 data in the dataset.

» Use sliding window to increase the number of dataset.

Inner ring fault

o ) Outer ring fault Ball fault
* 1657 for training, 711 for testing
@ Characteristic frequenciesbnder differpnt rotatinispeed.
Dynamometer Rotating speed
Freqs. (Hz) | Fgpo Fgpr 2Fps Fe
(rpm)
1797 107.364 | 162.186 | 141.168 | 11.929
— 1772 105.870 | 159.930 | 139.204 | 11.763
e _m 1750 104.556 | 157.944 | 137.468 | 11.617
v' Test stand of CWRU bearing data. 1730 103.361 | 156.139 | 135.904
g D F - UEEE Py Y e

CNN for Classification: Bearing Faults
Classification (2/3)

e Use vibration signals as inputs of IDCNN.

e Both training and testing accuracy are 100%.

Confusion matrix of model 10

@ Structure of IDCNN for bearing faults classification using vibration signals.

7 Layer Filter size | Stride | Number of filters of nodes | Activation func.
S Bos Conv. 1 30 1 8 ReLU
Pool. 1 4
T | o6 Conv. 2 30 1 [16 [ReLU
f S Pool. 2 4
g Conv. 3 30 1 [32 [ReLU
E o e Pool. 3 4
8 Conv. 4 30 1 [ 64 [ReLU
[ Pool. 4 4
o Flatten
& Fully-Conn. 1 128 ReLU
Classd Class1 Class2 Class3 o0 Fully-Conn. 2 32 ReLU
True label Output 4 Softmax
v Confusion matrix of IDCNN model Total parameters | 388488
for classifying CWRU bearing data. I Fi =, ==

. <
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CNN for Classification: Bearing Faults
Classification (3/3)

® Use short-time Fourier transform (STFT) time-frequency spectra as inputs of
2DCNN.

® The axes of images are removed when input into the model.

® Both training and testing accuracy are 100%.

confusion matrix of model using time-freq. images as inputs

@ Structure of 2DCNN for bearing faults classification using time-frequency

" spectra.
é Layer Filter size | Stride Number of filters of nodes | Activation func.

Conv. 1 9x9 2x2 |4 ReLU

Ty Conv. 2 9x9 2x2 |8 ReLU

s g Pool. 1 4x4

£ Conv. 3 4x4 2x2 |16 ReLU

8. Conv. 4 4x4 2x2 |32 ReLU

" £ Pool. 4 2%2
Flatten
Fully-Conn. 1 64 ReLU
Fully-Conn. 2 32 ReLU

Class0 Classl Class2 Class3 Output 4 Softmax ]
True label Total parameters | 63622
v Confusion matrix of 2DCNN model m
for classifying CWRU bearing data. | HELER A FEREEE w8

(1/2)

e Dataset introduction
» Milling machine: CHMER HM4030L
» Tungsten carbide milling cutters with 6 mm
of diameter are used to mill S45C steel.

» A tri-axial accelerometer (CTC AC230) is
mounted on the spindle.

» The sampling rate is 100 kHz.

» The tool wear is measured by Camera

(Deryuan RS-500), ImagelJ, and
PhotoImpact.

ESZo6°15C -

% 8220 Carnide LT

v’ (a) Milling machine of experiment.
(b) Tungsten carbide milling cutter (2 blades).
(c) Setup of accelerometers on spindle.
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CNN for Classification: Tool Wear Classification
(2/2)

e Use STFT time-frequency spectra of Y-axial signals as inputs of 2DCNN.
» There are total 742 data (unworn: 504, worn: 238), 371 for training and 371 for testing.

® The axes of images are removed when input into the model.

® Both training and testing accuracy are 100%.

confusion matrix of model using STFT time-freq. images as inputs for tool wear clasfcilﬁtaiun ’ Structure of 2DCNN for tool wear classification USing time'frequency

spectra.
Layer Filter size | Stride | Number of filters of nodes | Activation func.
L | Conv. 1 9%9 2x2 |4 ReLU
3 g . Conv. 2 9%9 2x2 |8 ReLU
% Pool. 1 4% 4
g Conv. 3 4x4 2x2 |16 ReLU
o 04
= Conv. 4 4% 4 2x2 (32 ReLU
E B .. Pool. 4 2%2
Flatten
o Fully-Conn. 1 64 ReLU
Class0 Classl
True label I Fully-Conn. 2 32 ReLU
v' Confusion matrix of 2DCNN model Output 2 Softmax
for classifying tool wear. E5%R T Total parameters | 28360

Summary of Applications of CNN for Vibration
Signal Analysis

e The vibration signals can be applied for classification and prediction directly or
combined with signal processing techniques.

® CNN can extract features in vibration signals and time-frequency spectra
automatically.

e By optimizing structure of CNN, a better performance of model can be achieved.
The optimized results are highly relative to modeling.

ICAL AR
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Outlines

e Explainable Artificial Intelligence (XAI) for Vibration Signals

Analysis: Bearing Faults Classification Using CNNs

» Gradient Class Activation Mapping (Grad-CAM)

» Explanation Using STFT Time-Frequency Spectra of CWRU Bearing Data
» Observation of Attention Maps

» Verification of Explanations

» Verification of Methodology Using Tool Wear Classification
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Attention-based method- Grad-CAM

e R

Attention map

L
Defective thread afber Grad-CAM
[

Test image Attention map Prediction bases

https://www.jiqizh_ixin.com/da;,ticles/m 18-12-26

BEEREogn .
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Gradient class activation mapping (Grad-CAM)

e Function: computing the attention of model.
® The oth feature map

1
= 7 Zm Zn A?n,n

» Z: the number of pixels in the feature map
» m, n: the index of row and column of the feature map
> Ag, n: the value of pixel in the mth row and nth column.

e The attention map Y¢ = Y, alF°
> a$: the weight of the oth feature map

<z200
<200
<zZ00O
<ZO0O

Class Activation Mappmg

Class
"" S A Activation |
Map
- (Australian terrier]
ﬁﬁﬂfﬁﬁl&bﬁm -ﬁg Reference: Grad-CAM: Visual Explanations from Dee radlent

Gradient class activation mapping (Grad-CAM)

® By partial differentiation and simplification, a$ can be computed by

c
€ =20 5
0 A% n
m n
® The attention map without normalization can be represented as

=YY s
m n o

® The normalized attention map computed using Grad-CAM can be represented as

1 C g0
S=72,2, 2, %
m n o

=
| ' ICAL AB
: = SRR EAEESE Reference




XAI- Attention Map

1 - :
w Attention Maps

o6

. |:> Reconstruct
02

* 1) 20 0 o ] 1003 |

ual
— MActual
o — Reconstruct

Explainable AI for Raw Data (vibration Signals)
using 1IDCNN

Fully-conn. 2

4 S
(WS :"’" . .
[I EEEE‘ EEEEi S #‘?\{){/ Clasl.{sgt:s;tlon
E _-\-;::'A:
Conv.1 Pool. 1 Conv.2 Pool. 2 Fully-conn. 1 Softmax
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Explainable AI for Raw Data Analysis

® Testing accuracy of model: 100%
e attention signal = attention X original signal

® Analyzing attention of model using a normal bearing.

/\ - amlweans = s
x .
f\
g /\ \ f’\'/ f\P/ IIl'u £
N |/ :
\ v o\
\
é . ~ _ _ - . Time [sec]

€ Comparison between attention signal and original signal of a

normal bearing under 1797 rpm.
ICAL AR 2
ERRR L2 I FE P R SRS .4

Explanation of model using raw signals

® Analyzing attention of model using a normal bearing.

FFT of original signal and attention signal of normal under 1797 rpm

0030 —— _®_ ori.sig FFT
_%  att. sig FFT

0.025

Magnitude

= o020
£

0015

=4
=1
=

0.005

Frequency Domain (Spectru

0.000

0 1000 2000 3000 4000

5000 6000
Frequency in Hertz [Hz]
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Explanation of model using raw signals

® Analyzing attention of model using a bearing with inner ring fault.

f — oeiginal weights
N A — oeiginal signal
I| || I| |I B attention signal ]
f A
|I II |I | II II |' \ |I | ‘ ‘ ‘
II | | || II II f \ N A A | I|I I|' I .
= I'n'| | \ || | 'u..'l I| III I|I ||I I". / llll f III \ Iu' ] | Al II ek it
i W Al U VY v £ '
I| | |I |'| 5,\ [ '| w1 I| |'
\ |\ | .'I | |I
/\ |'| ll. |' J V IL.'I V N
| \ |'I ;
II II 4 *
v w
oo - L L] 0000 1000 T Poac]
ndex
@ Attention of model using vibration signal of a bearing with inner ring @ Comparison between attention signal and original signal of a
fault under 1797 rpm. bearing with inner ring fault under 1797 rpm.
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Explanation of model using raw signals

® Analyzing attention of model using a bearing with inner ring fault.

FFT of original signal and attention signal of inner ring fault under 1797 rpm

—®  ori.sig FFT
_+ _ att. sig FFT

=
=
=

e
5
4

]
e
2

=
=
2

Frequency Domain (Spectrum) Magnitude
o

e
2
2
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Explanation of model using raw signals

® Analyzing attention of model using a bearing with outer ring fault.

i —— original weights

I ' o
Ao
f\ | I| |II v Il'u / f
B n v \ Al
n ,'I I'u i _/; I'I Il / \ |I | ,' . i
b I| Il f v - ) |I 1040 z
b vy |
L 1 )] WARRY .
\ \ | N |I \f
I". I| u' |II | \/
\d '\)II
- - I':::l - o o - N - Time [sec] -
@ Attention of model using vibration signal of a bearing with outer ring @ Comparison between attention signal and original signal of a
fault under 1797 rpm. bearing with outer ring fault under 1797 rpm.
ICAL AR
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Explanation of model using raw signals

® Analyzing attention of model using a bearing with outer ring fault.

FFT of original signal and attention signal of outer ring fault under 1797 rpm

ox —® ori.sig FFT
_* _ att. sig FFT

0.175
0.150
0125
0.100

107 Hz

0.075

0.050

0.025

Frequency Domain (Spectrum) Magnitude

0.000

0 1000 2000 4000 5000 6000

3000
Frequency in Hertz [Hz]
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€ Attention of model using vibration signal of a bearing with ball fault € Comparison between attention signal and original signal of a
under 1797 rpm. bearing with ball fault under 1797 rpm.
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Explanation of model using raw signals

® Analyzing attention of model using a bearing with ball fault.

FFT of original signal and attention signal of ball fault under 1797 rpm

—®  ori.sig FFT
_%  att. sig FFT

00175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

Frequency Domain (Spectrum) Magnitude

0.0000

0 1000 2000
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Explanation of model using raw signals

et atsaniion sgnal of ol unded 1707 fpm

A o ugFFT |
. alt g FFT

_FFT of original sign

Process of Grad-CAM

Output Layer E
(Softmax)

o % S 75 100 135 150 175 200

Grad-CAM
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Some examples of using Grad-CAM

prediction of image: cat. attention generated by saliency map

prediction of image: cat. attention generated by Grad-CAM

o 10 10
08 08
06 06
04 o4
02 02
00 00

50 75 100 125 150 175 200 0 25 50 75 10 125 150 175 200 50 75 100 125 150 175 200 0 25 S0 75 100 125 150 175 200
prediction of image: dog. attention generated by Grad-CAM prediction of image: dog. attention generated by saliency map

10
08
06
04
02

0.

0
% 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 ] 0 25 S0 75 100 125 150 175 200

SRR EAEESE

50 75 100 125 150 175 200

Some examples of using Grad-CAM

prediction of image: cat. attention generated by Grad-CAM prediction of image: cat. attention generated by saliency map
10 N 0 10
F3 =3
08
50 > 08
==
(8 = g
oe = 06
100
04 e 04
1 150 4 %
200 N ¥ " —
_IW\ i 200
RN S oo 00
0 B S 75 100 125 150 175 200 0 25 S 75 100 125 150 175 200 0 % w5 10 35 %0 U5 o 0 % @ % 1o 185 =0 Us o :
prediction of image: dog. attention generated by Grad-CAM prediction of image: dog. attention generated by saliency map
10 o
F2]
08
50
7
0.6
100
04 125
150
02 75
200
; og ——
0 25 S0 75 100 125 150 175 200 0 B 0 75 100 125 150 175 200 0 2 50 % 100 15 150 175 00 00 125 10 175
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Explanation of model using time-frequency spectra
(2DCNN)

ICAL AR

Explanation Using STFT Time-Frequency
Spectra of CWRU Bearing Data (1/4)

® The model is mentioned in (san ) | i————— e
applications of 2DCNN with Trausform sigrals ©

STFT time-frequency spectra.

100% of testing accuracy. -

® The comparison between using

Choose a few data in each category
and compute attention of model
using each data with Grad-CAM. )

vibration signals, STFT time- Train 2 CNN model for classfication
frequency spectra, and wavelet .
transform (WT) time-frequency - ﬁém é g
spectra is also carried out.

1

1

|

1

1

1

1

1

1

1

1

1 Analyze the attention and generate features of

with hlgh tesliug aceuracy. | frequency domain using statistical analysis,

1
1
1
1
1
I
1
1
1
1
1
1
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Explanation Using STFT Time-Frequency
Spectra of CWRU Bearing Data (2/4)

® The attention maps of model are overlapped with input images.

predictian of image: normal. attention generated by Grad-CAM prediction of image: inner ring fault, attenticn generated by Grad-CAM
s {a} image with axis

(b} input image cverlapped with attention

(1] L]
v' The attention map of model using a normal bearing. L v’ The attention map of model using a bearing with inner ring fault.
) prM.irrinn af image: outer ring fault attention ganarated by Grad-CamM prediction of image: ball fault. attention generated by Grad-CAM
{a) image with axis 10 (a) image with axis .

(b} input image averlapped with attentian

- - b) input image averlapped with attention

- on . o8
.:(r r., . . .

e [-F] - - a2

Bl a0

K}
v' The attention map of model using a bearing with outer ring fault. gugze: v The attention map of model using a bearing with ball fault. i
—

|
UONBAISSqQ pue uoru wnnoadg

Explanation Using STFT Time-Frequency
Spectra of CWRU Bearing Data (3/4)

® The attention of model using a normal bearing shows that the model focuses at low-
frequency band since there is no obvious structure resonance for a normal bearing.

e The attentions of model with damaged bearings show that the model focuses at high-
frequency bands from about 1000 to 4000 Hz which are cause by structure
resonance but not the characteristic frequencies [R3, R4].

[R3] G. Zhang, Y. Zhang, T. Zhang, and R. Mdsohel, "Stochastic resonance in an asymmetric bistable system driven by multiplicative and additive Gaussian noise and its application in bearing fault detection," Chinese Journal of

Physics, vol. 56, no. 3, pp. 1173-1186, 2018.
[R4] Q. He,J. Wang, Y. Liu, D. Dai, and F. Kong, "Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines," Mechanical Systems and Signal Processing, vol. 28, pp. 443-457, 2012.
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Explanation Using STFT Time-Frequency
Spectra of CWRU Bearing Data (4/4)

® The comparison between classifying using different inputs is sorted out.
e Hardware: NVIDIA Tesla V100 32GB GPU
e Environment: Python 3.6, Keras 2.2.4
Computing time (average value using 5 times of experiment) Testing
Inputs Transforming time Classifying time Total computing time Input size | Explainable
(sec/1 data) (sec/1 data) (sec/1 data) Accuracy
Use raw vibration signals as inputs
0 0.00133 0.00133 100% 12000*1 VAN
and explained using Grad-CAM
Use STFT spectra as inputs
0.75258 0.00419 0.75677 100% | 434*558*3 O
and explained using Grad-CAM
Using WT spectra as inputs
20.14071 0.00394 20.14465 100% | 278*558*3 X
and explained using Grad-CAM

o

ICAL AR
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Observation of Attention Maps (1/4)

FFT of original signal and attention signal of inner ring fault under 1797 rpm

—*_ o sig FFT
& att. sig FFT

® In order to compare the attentions of
IDCNN and 2DCNN, time-frequency
spectra are spin 90° clockwise to match the
X axis in frequency spectra of attention
signals.

H

Frequency Domain [Spectrum) Magnitude

g

Spin 90° to match
the frequency axis.

—
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Observation of Attention Maps (2/4)

* Since there are no obvious structure resonance » The attentions of a bearing with inner ring fault
for normal bearings, both models focus at low- are focusing at 1000~4000 Hz.
frequency bands.
FFT of original signal and attention signal of normal under 1797 rpm FFT of original signal and attention signal of inner ring fault under 1797 rpm

—*_ ori.sig FFT —*_ ori. sig FFT
~+_ att. sig FFT ane % att. sig FFT

?g 0020 'Eé

é [ é o0z

il ,

i o . Frequen(y‘:?Herr_z[Hz] . = = -

AlLA

..... 1 S —

Observation of Attention Maps (3/4)

» The attentions of a bearing with outer ring fault * The attentions of a bearing with ball fault are
are focusing at 800~3000 Hz. focusing at 2000~4000 Hz.

FFT of original signal and attention signal of outer ring fault under 1797 rpm FFT of original signal and attention signal of ball fault under 1797 rpm
ooo
_*_ ori. sig FFT —*_ ori. sig FFT
_4+  att. sig FFT —+_ att. sig FFT

" & 00150
S oo g
] g.
= o =
E E
2 E wa10
g
‘§ Q100 §
< 1 € oours
= oor E
E
3 g,
Zr oo { &

3
€ oo T T T 2 0025

1 s i i
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2000 o 501 w000 3000 200 000
Frequency if Hertz [Hz] Frequency in Hertz [Hz]
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Observation of Attention Maps (4/4)

® The observation shows model focusing at high-frequency bands (1000~4000 Hz).

e By the observation, an assumption for explanation can be proposed: The features in
high-frequency band can be applied for classification more easily for the model
instead of focusing at characteristic frequencies in diagnosis using signal
processing methods.

e The assumption is verified in next section.

ICAL AR
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Applications of CNN for vibration signals

Explainable Artificial Intelligence (XAI) for Vibration Signals Analysis: Bearing Faults
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Features of High-Frequency Bands

® The observation of frequency distribution of bearings with different conditions in
CWRU dataset 1s carried out.

v’ Average frequency spectrum ! s weonsawdgei] 1 *- beanngs wit neet g s | v Average frequency spectrum

of normal bearings. 3" ' g™ of bearings with inner ring
H £,
g | 5 faults.
=" 7 s
i E i
Frunmrp‘:Hum [Hz] 28 b - ‘mqunnc,'.n‘;::Hnm [Hz) . -

v Average frequency spectrum ___“: . —£_ boarings with cuter ring faults = bearings with ball faults |/ Average ﬁ-equency spectrum
of bearings with outer ring 3 . of bearings with ball faults.
faults. i -

E =
E - E i
£ | &
i i
g R
§ o | |§
£ I
o Frmwfuonr 2] il - e J e - n‘-numr'-;':mutml o i

Features of High-Frequency Bands

e The features in high-frequency bands are sorted out.
» The average magnitude of 1001~2000 Hz

» The average magnitude of 2001~3000 Hz : > 4 »
» The average magnitude of 3001~4000 Hz Rogutive She= N Fosithee St
> The kurtosis in 1001~2000 Hz skewness — lz (i —%)°
» The kurtosis in 2001~3000 Hz N& o®
» The kurtosis in 3001~4000 Hz 3988 [ ]
» The skewness in 2001~3000 Hz \
» The skewness in 3001~4000 Hz g
e The features are applied in verification of NN, =1
ANFIS, and decision trees.

s F
o1

005

o

’ -0 -9 -8 -7 6 -5 4 -J]-j -IA;I I(] 3453 6_)?4!1 9 10 ul
ICALAB 5=y S "
= kurtosis N 1 =
= I

SRR EAEESE




Verification Using Neural Networks

e A simple NN is applied for verification.
» Use the features in high-frequency bands as inputs of NN.
> Both training and testing accuracy of model are 100%.

O

"‘r V)
N N
i

Confusion matrix of model testing acc=1.0

Class3

Classz

-06

04

Predicted label

Classl

@ Structure of NN for classifying bearing faults
using features in high-frequency bands.

Layer nodes | Activation function i I
Input layer 8 None = e B
Hidden layer 1 | 10 Sigmoid ¥ Confision matrix OfNNhfl‘;;Cgs;fZ;fcli Eiif;zg faults using features of
Hidden layer2 | 10 Sigmoid CALAR ==
Output layer 4 Softmax v i2e g K P F SR SR 2

Verification Using ANFIS

e A first-order Sugeno-type ANFIS is applied in the thesis.

e § features in high-frequency bands are the inputs of ANFIS. 2 triangular membership
function are applied for each input. = 256 rules

e Since ANFIS are mostly applied for prediction, the output of ANFIS is defined as
class criteria.

» The output values are rounded to match integer labels.

® The testing accuracy of ANFIS is 96.9%. T (2
€ Confusion matrix of ANFIS using testing data. xl < —~
Actual class :: =
Normal | Innerring | Outer ring Ball e < = =
Ball 0 0 2 174 . |
Predicted | Outer ring 0 5 322 15 < L
class Inner ring 0 157 0 0 Y =
Normal 35 0?_ - 0 0 _\B v’ Structure of ANFIS.

SRR EAEESE e




Decision Tree

® Decision tree is a simple algorithm mostly applied for classification.

e Structure of trees
» Nodes
* Root node: The start of the tree which contains entire dataset.

* Internal nodes (decision nodes): The condition that can separate the dataset or subset into two subsets.
* Leaf nodes: The final nodes of the tree.

> Branches

e Information gain: The criteria for assessing and choosing the best decision.
» Maximize the separated information. 2 Minimize the information gain of decisions.

» Entropy
entropy = Y. p.log; p. (6)
» Gini impurity
Gini Impurity = ¥ p.(1 — pc) = X(pc — pcz) =1-% pcz 7
ICAL AB
EoEERIT G G FE P S e

Verification Using Decision Tree

e Entropy is adopted as information gain.

e Skewness of 3001~4000 Hz is not
applied in the tree.

ICALA.

v’ Decision tree for classification using features in high-frequency band.

TR AR A (Information gain: entropy)




Verification Using Decision Tree

® A NN is utilized to check if the feature is not necessary for classification.
® The training and testing accuracy are 100%.
® The result shows that the skewness of 3001~4000 Hz is not essential for classification

Confusion matrix of medel testing acc=1.0

using CWRU bearing dataset.

Class3

@ Structure of NN for classifying bearing faults
using features of high-frequency bands
(without skewness of 3000~4000 Hz).

Class2

Layer nodes | Activation function Eﬁ
Input layer 7 None % B
Hidden layer 1 | 10 Sigmoid "8
Output layer 4 Softmax

Class0

-

Class0 Classl Class2 Class3

ey True label
Icar v Confusion matrix of NN for classifying bearing faults using fedtures of
ESRRENERL high-frequency bands (without skewness of 3000~4000 Hz).

Comparison of Decision Tree and ANFIS Rules
(1/2)

® Since all of the features need to be considered in
ANFIS rules, a decision with more complete
features is chosen.

® Prediction of ANFIS using a data which matches the
decisions is 3.08 which belongs to outer ring fault.
» Average 1k~2k Hz: 0.001050888 Average 1k~2k Hz: 0.1958

» Kaurtosis 1k~2k Hz: 21.97054394 Kurtosis 1k~2k Hz: 0.01624

» Average 2k~2k Hz: 0.002055893 Normalize Average 2k~2k Hz: 0.07715

» Kaurtosis 2k~2k Hz: 0.00205352 e Kurtosis 2k~2k Hz: 0.09605 =
» Skewness 2k~3k Hz: 15.11562703 Skewness 2k~3k Hz: 0.01486

» Average 3k~4k Hz: 7.32406153 Average 3k~4k Hz: 0.0172

» Kaurtosis 3k~4k Hz: 3.364888697 Kurtosis 3k~4k Hz: 0.07626

>

Skewness 3k~4k Hz: 2.308279182 Skewness 3k~4k Hz: 0.06683
A EOEE e T i F RS RS v" The chosen decision of the decision tree. I




Comparison of Decision Tree and ANFIS Rules
(2/2)

By observing the firing strength of ANFIS rules, the first rule has the largest firing strength.

Rule 1: If (avg 1k is low) and (kur 1k is low) and (avg_2k is low) and (avg 3k is low) and
(kur 2k is low) and (kur 3k is low) and (skew_2k is low) and (skew_3k is low) then (classes
is [122.8173 6.2942 -92.7101 3.7964 272.4220 55.0627 -157.9949 -1.7471]xX +4.0015)

e o 2 T 0w [N e 3 w72 3 078D a0
—— —— = e —— = ——

1

/I
/
rf '
f

% Firing strength of ANFIS rules using chosen data.

Summary of Verification for Explanation of
CNNs

® The verification results show that the assumption can now become a correct
explanation for CNNs in classifying CWRU bearings.
» The features in high-frequency band can be applied for classification more easily for
the model instead of focusing at characteristic frequencies which are applied in most
researches and traditional diagnosis.

® The explanation is verified using different techniques to increase the persuasive and
correctness of explanation.

ICAL AR
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Verification of Methodology Using Tool Wear
Classification (1/2)

The model is mentioned in applications of CNN with 100% of testing accuracy.
First, the attention maps of CNN are generated using Grad-CAM.

The attention map for unworn tools is focusing at frequency bands larger than 5000

Hz while the attention for worn tool is focusing at frequency band lower than 3000
Hz.

prediction of image: unwear. attention generated by Grad-CAM

prediction of image: wear. attention generated by Grad-CAM
(a) image with axis

(a) image with axis
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(b) input image overlapped with attentio
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v' The attention map of model using an unworn tool. V' The attention map of model using a worn tool.
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Verification of Methodology Using Tool Wear
Classification (2/2)

@ Structure of NN for classifying tool wear

® The features applied for verifications are using features in frequency bands with high attention.
» Average 0~3000 Hz Layer nodes Activation function
» Kurtosis 0~3000 Hz Input layer 6 None
» Skewness 0~3000 Hz Hidden layer 1 10 Sigmoid
» Average 5001~10000 Hz Output layer 2 Softmax

» Kurtosis 5001~10000 Hz
» Skewness 5001~10000 Hz

Confusion matrix of model using freq. features of tool wear data. testing acc:]}on

® A NN is applied for verification.

Predicted label

® Both training and testing accuracy are 100%.

f . True label
v Confusion matrix of NN for classifying tool wear
. ICALAB
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Conclusions

e The interpretability and applications of CNNs for vibration signals analysis are
discussed.

® Applications of CNNs

» Both 1DCNN and 2DCNN can provide great performances for classification and prediction in vibration
signals analysis.

» By optimizing the hyperparameters using experimental design, a structure with better performance can be
achieved.

e Interpretability of CNNs
» The attentions of models are generated using Grad-CAM.

» By analyzing attentions and verifying, a explanation of classification models of bearing faults
can be achieved:
The features in high-frequency band can be applied for classification more easily for
machine learning than focusing on characteristics computed by traditional signal analysis.

» The proposed methodology can be applied in other classification problems of vibration signals
analysis. 105

Other Applications

Tool Wear Estimation System Development &
Sensors Selection
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Sensor Fusion

Changing cutting tool to
maintain product quality

No defective product

Estimation System Schematic Illustration
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Estimation of Tool Wear — Build Database

Acquire Signals
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Results of Influential Sensors Selection Analysis

@ The RMSE values of testing data for tool wear.

=

Conditions The RMSE Values of Testing Data The RMSE values of testing data from each sensors
X-axial Y-axial Z-axial PCB MEMS Current 016

F120A0.1 | 0.0494 | 00491 | 00518 | 0.0452 | 0.0426 | 0.0957 o -
F120A1.3 | 0.0568 | 0.0615 | 0.0609 | 0.0619 | 00684 | 0.0905 £ _—
F120A2.5 | 0.0565 | 0.0439 | 0.0453 | 00586 | 0.0512 | 0.0906 I
F240A0.1 | 0.0583 | 0.0559 | 00520 | 0.0768 | 0.0728 | 0.0968
F240A1.3 | 0.0727 | 0.0705 | 0.0859 | 0.0717 | 0.0836 | 0.1009 ,
F240A2.5 | 0.1103 0.0946 0.1077 | 0.1047 0.1266 0.1199 Foail Yrasiz Ll e e MRS curr=nt
F360A0.1 | 00980 | 0.1115 | 0.1218 | 0.1381 | 0.1399 | 0.1262

F360A1.3 | 0.0819 | 0.0795 | 00798 | 0.0840 | 00872 | 0.1376

F360A2.5 | 0.1017 | 0.0963 | 0.1021 | 0.1025 | 0.1037 | 0.1359 Ranking | Y-axial>X-axial>Z-axial>PCB>MEMS>Current

Average | 0.0762 | 0.0736 | 00786 | 0.0826 | 00862 | 0.1105

i
. ICALAB
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Estimation of Tool Wear Using IDCNN Combines with

Sensors Fusion

@ The RMSE values of testing data of the tool wear.

Number
1 0.0963 -
2 0.0612 -
3 0.0509 -
4 0.0451 | -
5 0.0272 -
6 0.0515

@ The RMSE values of testing data of the tool wear for single input.

Conditions

F360A2.5

0.1017

The RMSE Values of Testing Data

0.0963

0.1021

0.1025

0.1037

0.1359

S

*t

=
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Estimation of Tool Wear Using 1IDCNN
Combines with Sensors Fusion for Cost
Down

For cost down, MEMS microphone is an industrial technology
that combines microelectronics and mechanical engineering, it
is cheaper than other sensors which are sound acquirement
devices.

According to design of machining path, KAKINO path is a two-
dimensional plane (X-Y plane). Therefore, based on cutting
theory, the signals of X-axial and Y-axial accelerometers should

be considered.




Estimation of Tool Wear - Model Structure
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Real-time Tool Wear Detecting Based on
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Thank you for your attention!

Q&A
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